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SUMMARY 
Upwind differencing is known to lead to a substantial loss in total pressure. The present paper illustrates the 
importance of this error on two problems: flow in a converging-diverging duct and flow around a cylinder. A 
correction is proposed that reduces the total pressure error and yields dramatically improved results for the 
test problems. 
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1. INTRODUCTION 

Discrete methods for solving fluid flow problems often estimate the value of the variables at 
control volume faces in terms of the nodal values using some upstream weighted approximation. 
This approach provides stable schemes but can also lead to serious errors such as false diffusion’ 
and loss of total pressure.’ Another type of error, related to grid c~rvature ,~ is also associated 
with the upstream approximation. Lillington4 recognized that a streamwise correction to any 
upstream approximation scheme is required to enhance accuracy. Galpin et aL5 clearly demon- 
strated the connection between such a correction and the total pressure error. 

In the present paper, a correction to the upstream weighted average scheme of Raithby and 
Torrance6 is discussed. The objective of the correction is to reduce the total pressure error that 
results from the application of the upstream scheme to the discretization of the momentum 
equations. This paper demonstrates the importance of eliminating the total pressure error. The 
particular method that is used applies well to situations where the main flow direction is closely 
aligned with the grid lines. 

2. THE TOTAL PRESSURE CORRECTION 

The source of the total pressure error and a remedy to it for one-dimensional inviscid flows are 
discussed by Galpin et d5 The present approach differs in that the correction is based on the 
local solution of the one-dimensional viscous flow problem illustrated in Figure 1. The 
momentum equation for that problem can be written as 

= -s, pU dU d’U 
,u dx dx’ 

- _ _ _ _  
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Figure 1 .  One-dimensional flow problem used to derive the total pressure correction 

where p U  is taken as constant over 0 Q x Q L. The boundary conditions are 

at x = 0, 

at x = L, 

U = Up, 

U = U,. 

The source S contains the influence of the pressure gradient and of the shear. S is assumed 
constant over the interval 0 6 x d L and is given by 

1 ap azu s=-- - -  
ax a y 2  . 

The solution to equation (1) with the given boundary conditions yields’ 

where 
Re = M L / p A y ,  M = QUAY. 

Hence, at the east face of the P velocity control volume (at x = L/2  in Figure 1)  for example, the 
velocity is 

U e =  ( $ + a , ) U P + ( $ - a e ) U E  - Sa,L2/Re 
> 

I II 
(4) 

The Reynolds number in equations (4) and (5) is based on the mass flow through the east face of 
the control volume. A similar expression is obtained for the west face velocity. 

The weighted average scheme of Raithby and Torrance6 expresses the face velocity using only 
term I of equation (4), which is also equivalent to the scheme proposed by Spalding.* In other 
words, the scheme neglects the effects of the pressure gradient and of the shear on the velocity 
change between the node P and the face. The omission of term I1 results in the total pressure 
error. 

It is interesting to note that for the particular case of an inviscid flow (i.e. p -+ 0), a, = + and, 
from equation (2), 

SueL2 LAY dP 
lim - - 
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Equation (4) can then be written as 

LAY ap 
2Me ax ue=up---. 

Equation (6) is identical to the correction proposed by Galpin et aL5 for the special case of one- 
dimensional inviscid duct flow. 

The total pressure correction presented in this section is based on the solution of a one- 
dimensional problem. The correction will be accurate if the flow is closely aligned with one of the 
grid line directions ( V  x 0) or if the cross-stream gradient in V(i.e. a U / d y )  is small. If V a U / J y  is 
large, failure to add the cross-stream advection term will result in a false diffusion error. 

Finally, the influence of the cross-stream di,ffusion is included in the source S (equation (2)) 
because of test results which indicated that, for viscous flows, the streamwise pressure gradient 
and the shear stress were of the same order of magnitude near solid walls.g 

3. DISCRETIZATION O F  THE TOTAL PRESSURE CORRECTION 

The two-dimensional momentum equations can be written in general orthogonal co-ordinates 
and discretized by a finite volume approach." Based on the co-ordinate system illustrated in 
Figure 2(a), the net momentum flux in the x,-direction for the velocity control volume surroun- 
ding Up (region enclosed by dashed lines in Figure 2(a)) can be expressed as" 

Figure 2. (a) General orthogonal co-ordinate system with storage locations for velocity U ,  pressure P and shear strains 
e12; (b) general orthogonal co-ordinate system with storage convention for arc lengths 
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Substituting equation (4) for the face velocities, the following is obtained: 

hi, u, - hi, u, = a,[($ + a e ) u p  + (i- @ e ) u E ]  

- ni,C(+ + @,)UW + (f - @ , ) U P 1  

A B 

Terms A and B in equation (7) form the total pressure correction for the net advection of 
momentum across the control volume in the main flow direction. The east face correction 
(term A) can be written as 

Referring to Figures 2(a) and 2(b), the approximations to the different terms of equation (8) are 

‘EE - pP ( g)e AS,, + ASlee’ 

where e l ,  represents the strain rate. Analogous approximations are used for the west face 
correction. 

4. VERIFICATION OF THE PERFORMANCE O F  THE CORRECTION 

4.1.  The converging-diverging duct problem 

A good test problem to evaluate the performance of the total pressure correction is the laminar 
flow in a converging-diverging duct. For that particular problem, the pressure gradient in the 
main flow direction forms an important part of the momentum balance. It is therefore expected 
that the use of an upwind scheme without any correction will lead to a significant total pressure 
error. 

The geometry of the problem as well as the boundary conditions and the fluid properties are 
illustrated in Figure 3. The equations are discretized following the method of Raithby et d . l l  for 
orthogonal grids. Two different grid sizes, denoted by N x 10, are used. N and 10 are the number 
of pressure nodes” in the x,-and x,-direction respectively. N is chosen to be 18 and 36 for the 
two grids used. 

Along the centre line of the duct, the velocity in the x,-direction is zero. The x,-momentum 
equation can therefore be expressed as 

where the grid curvature terms are neglected. Integrating equation (9) along x, from, say, point A 
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p = 1.164 K9/ms 
p = 
L= 1.5m 
H = 1.5m 

1.024 X lo-’ N ,  r/m2 

---I- = O  H 

__-  = O  I - 
y =  0 u = v = o  I k L 3 

Figure 3. Converging-diverging duct problem: geometry, properties of fluid and boundary conditions 
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Figure 4. Total pressure variation along centre line of converging-diverging duct using an upwind scheme (NC) and an 

upwind scheme with the total pressure correction (WC) for different numbers of control volumes in x, 

to point B yields the following expression: 

R represents a ‘total pressure’ change between points A and B. If equation (9) is satisfied exactly, R 
is zero. 

Figure 4 illustrates the R-profiles obtained using the ‘standard upstream weighted average 
scheme of Raithby and Torrance6 with no correction (NC). Also shown are the profiles obtained 
with the same upstream scheme corrected with the total pressure correction (WC). 
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A significant error (is. departure of R from zero) appears after the contraction when NC is 
used. By increasing the number of nodes in the x,-direction (i.e. decreasing AS,), the error 
decreases. R is proportional to AS,,5 and it is expected that R will asymptotically vanish as N 
increases. 

The magnitude of R is dramatically reduced when WC is used. For N = 18 the difference 
between the outlet and inlet dynamic heads is reduced from about 170% to 12%. For N = 36 the 
difference is less than 1 O h .  

It is important to mention that false diffusion does not give rise to significant error because the 
flow is closely aligned with the grid lines. 

In the present situation the flow is two-dimensional; but, by taking advantage of the fact that 
the main flow direction is closely aligned with the grid lines, the application of the correction 
allows a significant reduction of the total pressure error with a reasonable number of control 
volumes. 

4.2. Potentialflow past a cylinder 

Because of the presence of large pressure gradients, the potential flow past a cylinder is another 
excellent test problem for the total pressure correction. The geometry of the problem and the 
properties of the fluid are given in Figure 5. 

The analytical streamwise velocity for the potential flow around a cylinder in an infinite 
domain is given by” 

Here r and 8 are the polar co-ordinates 

L = 1.576 m 
€I = 1.145m 
a = 0.143 rn 

Center of Cylinder 
z = 0.714 m 
y = 0.571 m 

of the point where Us is sought. 

U, = 40.0m/s 
p =  1.164 Kglm’ 

u =  u- P =  O N  s/m‘ 
v =  v, 

11 = 
I’ = I1 

Figure 5. Potential flow past a cylinder problem: geometry, properties of fluid and boundary conditions 
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The pressure coefficient C, is defined as 

P - P ,  c, = ~ 

3 P m  u,' ' 

P ,  + + p ,  u,' = P ++pu,2, 

From Bernoulli's equation 

the pressure coefficient can be rewritten in incompressible form as 

c, = 1 - u,"u,', (12) 

with U , / U ,  given by equation (1  1).  
The numerical calculation is performed on a 40 x 30 orthogonal grid. The boundary velocities 

are specified from the analytical solution, except at the outflow boundary where a fully developed 
flow is assumed. As with the previous test problem, the transport equations for momentum are 
discretized by the method of Raithby et ul." In the estimation of mass flows across all control 
volumes faces, however, a linear variation of velocity with distance along the faces was used. This 
approach yields more accurate estimates of the mass flow rates, particularly for the regions near 
the stagnation points. Full details of the discretization of the equations are available in the thesis 
of De Henau.' 

Figures 6(a) and 6(b) compare the calculated and analytical results (equations (1 1 )  and (12)) for 
the dimensionless streamwise velocity U , / U ,  and the pressure coefficient C,. The comparison is 
done at the pressure nodes within the flow that lie adjacent to the plane of symmetry and to the 
surface of the cylinder. Some sample pressure nodes are illustrated in Figure 5 by dots within the 
control volumes. It is noted that, from equation (l l) ,  UJJ ,  should lie between 0.0 and 2.0 on the 
surface of the cylinder (for r = a). However, because the points where the comparison is made do 
not lie on the surface of the cylinder, the maximum value of U J U ,  is less than 2.0 and the 
minimum greater than 0.0, as illustrated in Figure 6(a). The same applies for the maximum value 
of C, which is less than 1.0 and the minimum which is greater than - 3.0 (Figure 6(b)). The curves 
labelled WC and NC refer respectively to the calculations performed with and without the 
pressure correction. 

The numerical results obtained applying the total pressure correction are in excellent agree- 
ment with the analytical results. The small discrepancies observed near the stagnation points and 
at the top (or bottom) of the cylinder are attributed to the poor grid resolution in those regions of 
high gradients. 

As illustrated in Figure 6(a), a velocity deficit of about 20% is observed behind the cylinder when 
the pressure correction is not applied. Figure 6(b) indicates that the omission of the correction 
results in a pressure loss near the trailing edge of the cylinder. Those results once again indicate 
the importance of the total pressure correction when an upstream scheme is used. 

5. DISCUSSION AND CONCLUSIONS 

The standard upstream weighted scheme obtains the velocity U, at the control volume face that 
lies between the nodes for the velocities Up and U,, by solving a one-dimensional advection- 
diffusion equation. The present paper improves the accuracy of this scheme by including the 
effects of the pressure gradient and cross-stream diffusion in the one-diemensional solution. This 
scheme will therefore give more accurate pressures than the standard upstream scheme whether 
or not the flow is aligned with the grid, but will be subject to a false diffusion error when the flow 
crosses the grid at an angle. 
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Figure 6. Comparison of numerical and analytical solutions for potential flow past a cylinder: (a) streamwise velocity 
distribution along plane of symmetry and cylinder surface; (b) pressure coefficient distribution along plane of symmetry 

and cylinder surface 

The pressure error as well as the false diffusion error can be eliminatedI3 if U, is determined 
from interpolation using Up and UE (central difference approximation), from extrapolation using 
Up and U, (second-order upwind assuming U,  > 0), or by using parabolic interpolation (QUICK 
assuming U, > 0). While such schemes yield good accuracy, at least on fine meshes,'" the profile 
shape does not' adjust to reflect the importance of the different physical processes. This leads to 
algebraic equations with transport properties that are different from those of the underlying 
differential equations. This in turn leads to solutions that often have non-physical oscillations. 
The method proposed in this paper yields well conditioned equations and solutions which have a 
lower propensity for 'wiggles'. 
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Calculations performed for laminar flow in a converging-diverging duct and for potential flow 
past a cylinder indicate that the application of the correction allows a significant reduction in the 
total pressure error and an improvement in the numerical solution. 

a 

e 

L 

P 
R 
Re 
S 
U 

CP 

h l ?  h2 

M 

us 
urn 
V 
x1, x2 
x, Y 

Greek letters 

U 

AS, ,  AS2 
AY 
P 
P 

Subscripts 

1, 2 
e, w 
P, E, W, EE 
00 

Acronyms 

wc 
NC 

APPENDIX: NOMENCLATURE 

radius of cylinder (Figure 5 )  
pressure coefficient (equation (12)) 
fluid strain 
grid metrics in the xl- and x,-direction respectively 
distance between two adjacent nodes (Figure 1) 
mass flows through the faces of the control volumes 
pressure 
total pressure error (equation (10)) 
Reynolds number 
momentum source term (equation (2)) 
velocity component in the x,-direction 
streamwise velocity 
freestream velocity 
velocity component in the x,-direction 
generalized co-ordinate directions 
Cartesian co-ordinates 

convective weight 
arc lengths in the xl- and x,-direction respectively 
control volume dimension in y (Figure 1) 
laminar viscosity 
density 

denoting co-ordinate directions x1 and x,, respectively 
referring to locations on the faces of the control volumes 
referring to nodal locations 
referring to freestream condition 

with correction 
no correction 
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